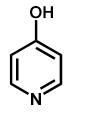
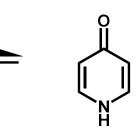
Tautomerism in InChl V1.06

Marc C. Nicklaus

(NCI, NIH)

InChI Open Days, April 5, 2022


Working Group: Redesign of Handling of Tautomerism for InChI V2 Project No.: 2012-023-2-800


Tautomerism

Tautomers are isomers that can readily transform into each other through chemical equilibrium reactions

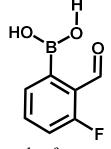
- Prototropic tautomerism:

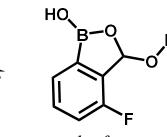
intramolecular movement of a hydrogen atom

enol form

keto form

- Valence tautomerism:

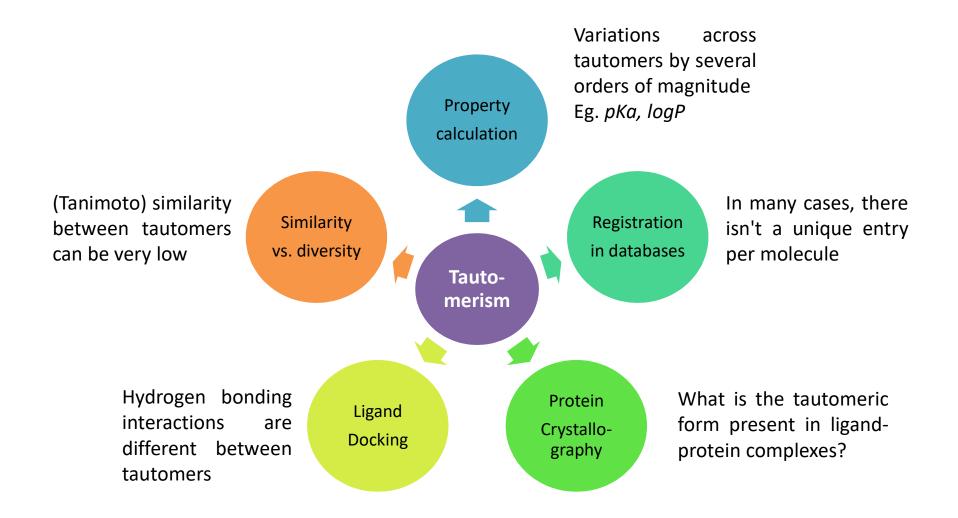

rearrangement of bonds w/o migration of atoms


azide form

tetrazole form

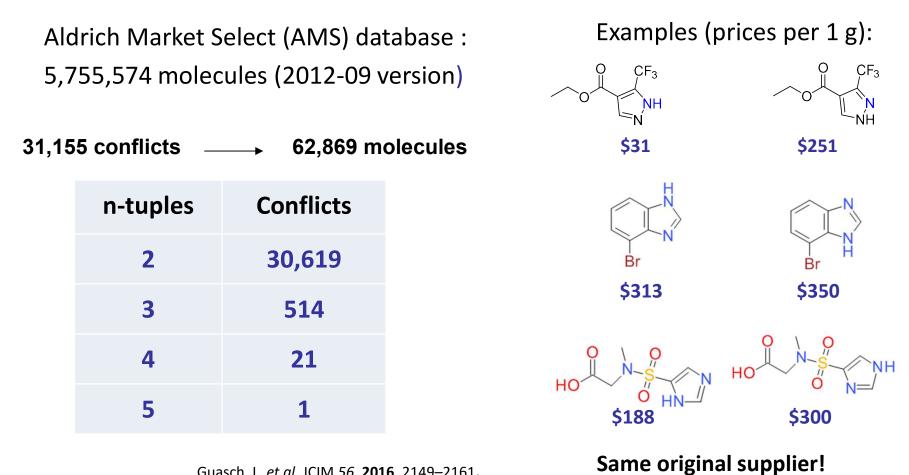
- Ring-chain tautomerism:

movement of the proton accompanied by opening/closing of a ring



acyclic form

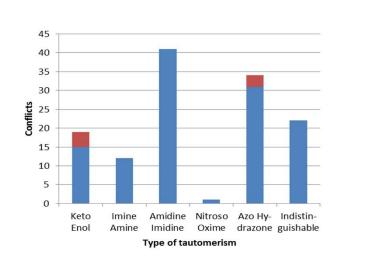
cyclic form


Why worry about tautomers?

The existence of multiple tautomeric forms of the same molecule can create problems!!!

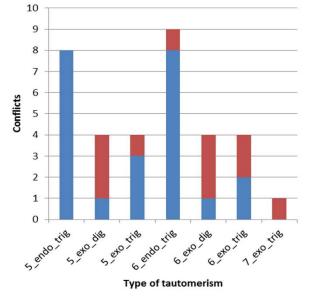
Not Just an Academic Question

Tautomeric pairs (conflicts) – via NCI/CADD identifiers¹ ¹ Sitzmann et al. SAR QSAR Environ. Res. 2008, 19, 1–9



Guasch, L. et al. JCIM 56, 2016, 2149-2161.

4


Experimental Verification

Analysis with both ¹H NMR and ¹³C NMR experiments

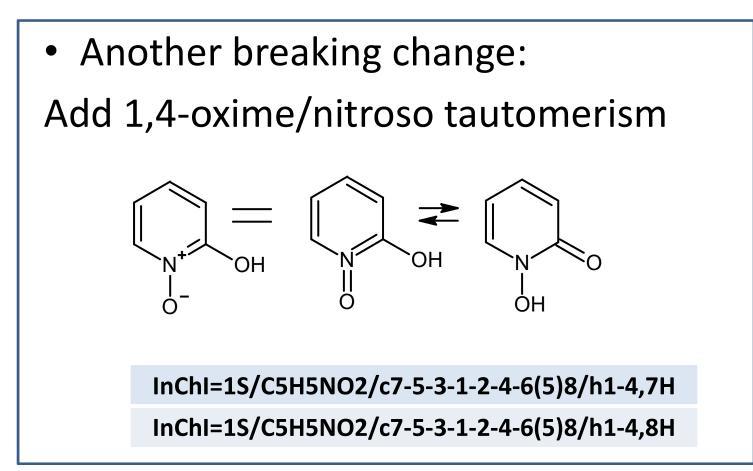
Prototropic tautomerism

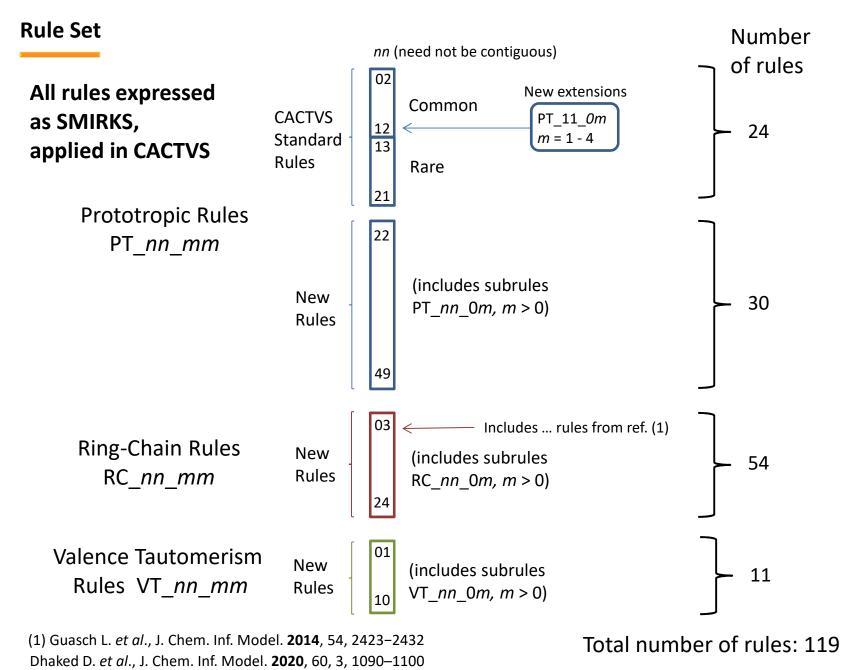
Ring-chain tautomerism

Blue: samples are the same substance. Red: samples are different substances.

Tautomerism is Widespread

Tautomerism is not just interesting, important, and potentially costly – it is <u>widespread</u>:


• Tautomerism possible for an average of 71% structures tautomeric across ~401 million molecules


Dhaked, D. K. et al. J. Chem. Inf. Model. 2020, 60, 3, 1253–1275

How does InChI up to version 1.05 handle tautomerism?

- InChI is in principle designed to be tautomer-invariant
- Standard InChI handles a limited range of tautomerism types
- One can turn on additional tautomeric types in non-standard InChI via options: KET, 15T
- It was recognized early on that important types of tautomerism are missing

Proposal by Dmitrii Tchekhovskoi in 2012:

9

Dhaked D. et al., J. Chem. Inf. Model. 2020, 60, 3, 1253–1275 Dhaked

Dhaked D., Nicklaus M. ChemRxiv 10.26434/chemrxiv.14779254.v1

Tautomer Enumeration Tool

https://cactus.nci.nih.gov/tautomerizer/

NCI/CADD Group

Tautomerizer - Predict tautomers based on 80+ rules

Introduction | Form | Individual Rule Pages | Rules Sources | Help

Enter the structure in SMILES format

1. Input Structure SMILES:	Structure Editor	
Submit		
2. Single step or Multi step:		
Single step ○ Multi step		
3. Activate rules:		
○ Activate all rules		
○ Activate standard rules		1
O Activate only new rules		
C Enter your own rule as SMIRKS:		
Activate custom rule set via following checkboxes:		
Select rules PT_02_00 - 1,5 (thio)keto/(thio)enol - [0,S,Se,Te;X1:1]=[Cz1H0:2][C:5]=[C:6][CX4z0,NX3:3][#1:4]>>[#1:4][0,S,Se,Te;X2:1][Cz1:2]=[C:5][Select example: C1=CC(C=C(C1=0)C)=0 Run Example	C <mark>:6]=</mark> [Cz0,N:3]	
PT_03_00 - simple (aliphatic) imine - [#1,a,0:5][NX2:1]=[Cz{1-2}:2][CX4R{0-2}:3][#1:4]>>[#1,a,0:5][NX3:1]([#1:4])[Cz:2]=[C:3] O Select example: [C]1(CC[C]CC1)=[N] Run Example		
PT_04_00 - special imine - [Cz0R0X3:1]([C:5])=[C:2][Nz0:3][#1:4]>>[#1:4][Cz0R0X4:1]([C:5])[c:2]=[nz0:3] Select example: C(CC1=NC=C[NH]1)(C)C Run Example		

InChI[Key] (V. 105) only Partially Recapitulates a More Complete Set of Rules

InChl Calcula	tion Type >	Standard	•	ADDH W0}	
_	Database	Tautomeric	InChI Success	Strict InChl	
Database	Size	Part	Rate (%)	Success Rate (%)	Rules applied in chemoinformatics
					toolkit CACTVS
CSD	319,201	203,108	26.25	13.46	
ChEMBL	1,820,035	1,578,290	62.15	28.55	
AMS	8,409,644	7,204,965	64.77	29.85	
AIVIS	8,409,044	7,204,905	04.77	29.05	
PUBCHEM	96,502,282	78,807,315	56.64	29.47	
CSDB	141,743,903	127,543,398	71.27	31.90	Devendra Dhake

Devendra Dhaked

InChI Calcula	ition Type >	Non-standard	{DONOTADD	H WO RECMET NEWPS	SPXYZ SAsXYZ Fb Fnud KET 15T}
	Database	Tautomeric	InChl Success	Strict InChI	
Database	Size	Part	Rate (%)	Success Rate (%)	
CSD	319,201	203,108	48.83	30.90	Dhaked D. <i>et al.,</i> J. Chem. 2020 , 60, 3, 1253–1275
ChEMBL	1,820,035	1,578,290	73.91	37.46	
AMS	8,409,644	7,204,965	71.99	36.32	
PUBCHEM	96,502,282	78,807,315	66.52	38.26	
CSDB	141,743,903	127,543,398	78.70	38.97	

Dhaked D. et al., J. Chem. Inf. Model. 2020, 60, 3, 1253-1275

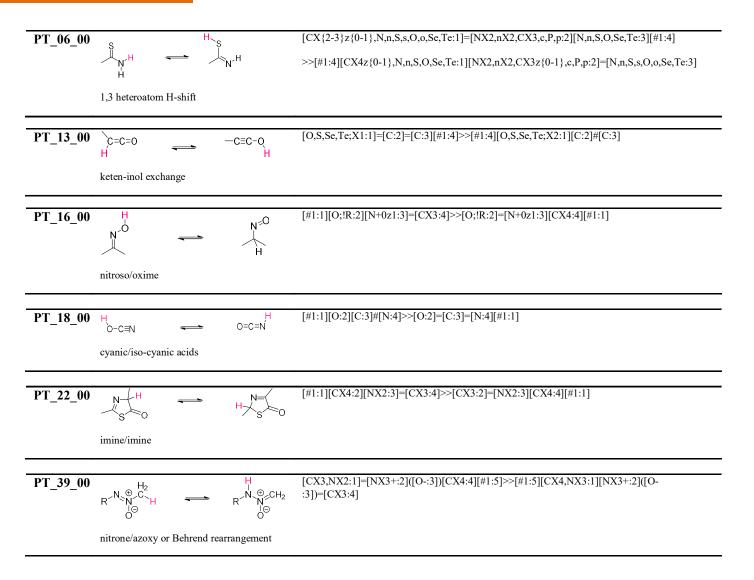
Strict InChI Success Rate: All ruleenumerated tautomers have same InChIKey

InChl Success Rate: At least two rule-enumerated tautomers have same InChIKey

New Rules: Integrated in experimental version of InChI 1.06

- New rules, as implemented in CACTVS, expressed as SMIRKS •
- InChI doesn't have a SMIRKS parser •
- Adding new tautomeric rules requires code changes in the core of InChI
- We picked ~20 prototropic rules as candidates for implementation in InChI
- No ring-chain or valence tautomerism rules impossible to add to current InChI
- Igor Filippov was able to add six new rules

Note: These were all the rules that could be added; for others, the effort was unsuccessful!


Igor Filippov

Six new rules implemented in InChI library (based on V. 1.06 code) integrated in CACTVS.

Wolf-D. Ihlenfeldt 12

New Rules Implemented

Note that example structures are just that: examples. Similar for the names. The SMIRKS are really defining the rule!

In InChI, new code has to be written!

What have we gained with the six new rules?

Total of 8 rules: KET, 15T, PT_06_00, PT_13_00, PT_16_00, PT_18_00, PT_22_00, PT_39_00

Counting various identifiers for recent version of PubChem (2020-02 Compound database):

90,600,000 compounds analyzed for the PubChem file(s)

Number of cases where S, N, T same:	26,339,099
Number of cases where S, N same, T diff:	28,104,489
Number of cases where N, T same, S diff:	10,892,602
Number of cases where S, N, T diff:	25,252,306

Note: Most analyses were done with InChKeys but could as well have been done with InChIs

90,390,917 unique Standard InChlKeys found

87,322,470 unique non-standard InChlKeys (with KET and 15T turned on)

87,322,472 unique Tauto InChlKeys with KET and 15T turned on

Differences vs. the non-standard InChIKey count:

84,249,356 (-3.519%, -3,073,114) unique Tauto InChIKeys (with all 8 rules turned on)

87,448,002 (0.144%, 125,532) unique Tauto InChIKeys with just KET turned on 90,184,001 (3.277%, 2,861,531) unique Tauto InChIKeys with just 15T turned on 86,004,390 (-1.509%, -1,318,080) unique Tauto InChIKeys with just PT_06_00 turned on 90,310,034 (3.421%, 2,987,564) unique Tauto InChIKeys with just PT_13_00 turned on 90,284,657 (3.392%, 2,962,187) unique Tauto InChIKeys with just PT_16_00 turned on 90,326,333 (3.440%, 3,003,863) unique Tauto InChIKeys with just PT_18_00 turned on 88,785,161 (1.675%, 1,462,691) unique Tauto InChIKeys with just PT_22_00 turned on 90,324,463 (3.438%, 3,001,993) unique Tauto InChIKeys with just PT_39_00 turned on

https://cactus.nci.nih.gov/download/tautomer/

Release 3 - November 2019

2,819 Tautomeric Tuples Comprising 5,977 Structures

Structurally different tuples: 1,776 (comprising **3,884 different structures**) since some tuples are differentiated from each other only by experimental conditions such as solvent, spectroscopy method, etc.

See <u>https://doi.org/10.1021/acs.jcim.9b01156</u> and <u>https://doi.org/10.26434/chemrxiv.10790369.v1</u> for literature about this database.

Dhaked D. et al., J. Chem. Inf. Model. 2020, 60, 3, 1090–1100

How Does InChI Perform on "Tautomer Database"?

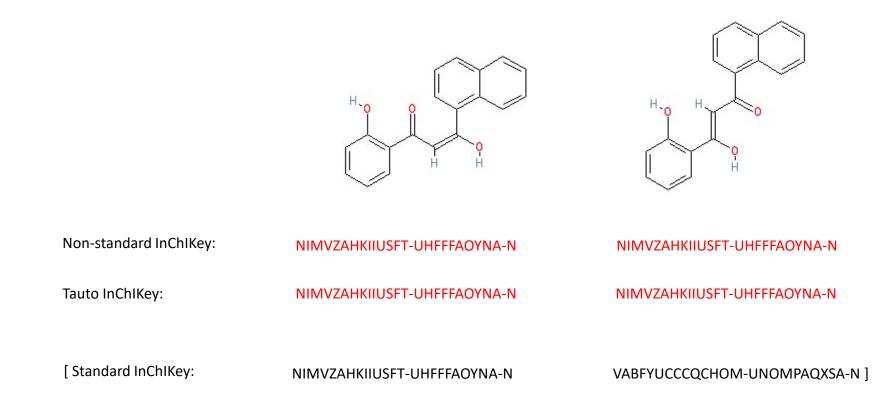
3380 unique Standard InChIKeys found

2416 unique non-standard InChIKeys (with KET and 15T turned on) found

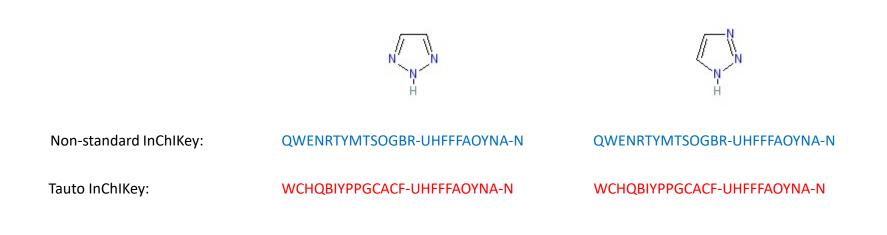
2210 unique Tauto InChIKeys (with all 8 rules turned on) found

2416 unique Tauto InChIKeys with KET and 15T turned on found for the PubChem file(s)

2210 (-8.526%, -206) unique Tauto InChIKeys (with KET, 15T and all 6 new rules by Igor F. turned on) found 2961 (22.558%, 545) unique Tauto InChIKeys with just KET turned on found 2809 (16.267%, 393) unique Tauto InChIKeys with just 15T turned on found 2240 (-7.285%, -176) unique Tauto InChIKeys with just PT_06_00 turned on found 3379 (39.859%, 963) unique Tauto InChIKeys with just PT_13_00 turned on found 3380 (39.901%, 964) unique Tauto InChIKeys with just PT_16_00 turned on found 3380 (39.901%, 964) unique Tauto InChIKeys with just PT_18_00 turned on found 3353 (38.783%, 937) unique Tauto InChIKeys with just PT_22_00 turned on found 3364 (39.238%, 948) unique Tauto InChIKeys with just PT_39_00 turned on found

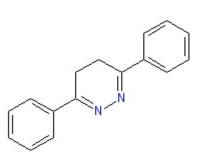

"Ideal" InChI algorithm would generate 1776 unique InChI[Key]s

How do the variants of InChI perform against each other:


3884 - 3380 = 504 cases of tautomeric overlap found for Standard InChIKey

3884 - 2416 = 1468 for <u>non-standard InChIKey</u> (with KET and 15T turned on) – **1381 tuples found** 3884 - 2210 = 1674 for <u>Tauto InChIKey</u> (with KET, 15T, 6 new rules) – **additional 191 tuples found** 638 structures not identified as tautomers of any other structure = **319 tautomeric pairs missed**


Non-standard InChI and Tauto InChI Identify Tautomers With Same Identifier

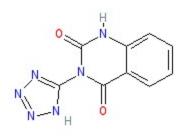


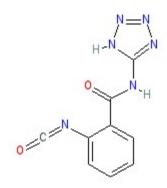
Non-standard InChI and Tauto InChI Identify Tautomers With Different Identifiers

Only Tauto InChI Identifies Tautomers

Non-standard InChIKey:

UHFJDRXFXQDUHB-UHFFFAOYNA-N


Tauto InChlKey:


YAMMWMQCRXUUCQ-UHFFFAOYNA-N

YAMMWMQCRXUUCQ-UHFFFAOYNA-N

GEHJYGJMMCSVQL-UHFFFAOYNA-N

No InChI Identifies Tautomers

Non-standard InChIKey:

Tauto InChlKey:

BBLOKLTVQNRBCZ-UHFFFAOYNA-N

FQQIRUPVTOGMNW-UHFFFAOYNA-N

NGZXTQLEPBMFOH-UHFFFAOYNA-N

DMNYUUUGNPYNGA-UHFFFAOYNA-N

Summary

Compared with a comprehensive set of tautomeric rules:

- Current Standard InChI recapitulates ~30% of amenable compounds
- Current Non-Standard InChI (KET, 15T) recapitulates ~37% of compounds
- Relative to Standard InChI, Non-Standard InChI (KET, 15T) equates 3.5% more compounds as tautomers of other compounds in a typical large database (e.g. PubChem)

Working group achievements:

- Six new prototropic rules were added to InChI code
- Relative to Standard InChI, "Tauto InChI" (KET, 15T, 6 new rules) equates 7% more compounds as tautomers of other compounds, i.e. yet 3.5% more than Non-Standard InChI

Availability:

• Experimental version of InChI 1.06 released with 6 rules added

Conclusion

Notes and Questions:

- Tauto InChI is different InChI: many InChIKeys are different. Do not mix with non-standard InChI!
- Maybe should have kind indicator "T" instead of "N": WCHQBIYPPGCACF-UHFFFAOYTA-N ?
- How to test: Which rules are realistic, which ones may be too strict?

Future outlook:

- Prototropic transforms: doubtful whether more can be added
- Ring-chain, valence tautomerism: likely incompatible with current InChI chemical structure model
- To be able to add more rules, InChI code likely needs to be re-written

Markus Sitzmann Waruna Yapamudiyansel Megan L. Peach James A. Kelley Joseph J. Barchi Jeff Saxe Igor Filippov

Members of the IUPAC Working Group: Gerd Blanke Evan Bolton Alex M. Clark Bret Daniel Devendra Dhaked Laura Guasch Wolf-Dietrich Ihlenfeldt Gregory Landrum John W. Mayfield Hitesh Patel Roger Sayle Dmitrii Tchekhovskoi

Igor Pletnev (†)